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Executive Summary 

 
The Sierra Nevada red fox (SNRF; Vulpes vulpes necator) is native to the subalpine regions of the Sierra 
Nevada and Cascade mountain ranges of California and Oregon. In the last century, the SNRF has 
experienced a major range contraction and decline in California, whereas the number, size, and 
connectivity of populations in Oregon remain unclear. The uncertain status of SNRF in Oregon has 
impeded monitoring and formation of a conservation strategy for the subspecies. Objectives in this study 
were to provide an initial characterization of the potential geographic range, effective population size, 
connectivity, and genetic distinctiveness of SNRF in the Oregon Cascade Range. 

We used occurrence records of red foxes in conjunction with environmental covariates to predict the 
potential SNRF distribution in the Oregon Cascades using maximum entropy (Maxent) modeling. We 
assembled occurrence records of red fox in the Oregon Cascades from 1985–2016, and subsetted records 
to independently model an inclusive dataset that employed all available records (n = 169), including 
unverified visual sightings, and a high-reliability dataset containing only genetic and digital images (n = 
124). Two variables, minimum January temperature and land-cover type, were most influential in the 
model. Models predicted a core distribution along the high-elevation portion of the crest, covering ~3,470 
km2 or 6% of the Cascade region.  With the exception of a gap immediately south of Mount Hood, this 
predicted core distribution was continuous along the north-south extent of the crest, suggesting potentially 
high connectivity among known occurrence regions.   

To assess connectivity among SNRF within the Oregon Cascade Range directly, we analyzed genetic 
samples.  In total, we analyzed 389 genetic samples (hair, scat, tissue) collected in and adjacent to the 
Cascade region during 2010–2016. Of these, 78 samples were from red fox, and 42 possessed sufficient 
nuclear DNA to construct individual sex-specific genotypes from 31 microsatellite loci, resulting in 
identification of 22 distinct individuals. Analyses of maternal, paternal, and bi-parentally inherited 
markers indicated the occurrence of two distinct populations in the Oregon Cascade. Analysis of 
population structure indicated a geographic break approximately mid-range, coincident with U.S. Route 
20 west of Bend, in an area where Maxent modeling indicated high potential connectivity. Genetic 
characteristics of the cluster in the southern Cascades were consistent with a small, historically isolated 
population. Genetic diversity was low (He = 0.44), and the genetic effective population size estimated at 
the equivalent of 14 breeding adults (95% CI = 11–20).   

To assess the genetic distinctiveness of Oregon Cascade populations relative to the Lassen, California 
SNRF population to the south and Rocky Mountain red foxes (V. v. macroura) to the east, we employed 
admixture and principal component analyses.  These analyses indicated the southern Oregon Cascade 
cluster to be distinct from all neighboring populations, showing no evidence of recent connectivity to 
Lassen (FST = 0.34) or other populations outside the Oregon Cascades. In contrast, the population in the 
northern Cascades had high genetic diversity (He = 0.71), a larger effective population size, equivalent to 
48 breeding adults (95% CI = 37–67), and was not significantly differentiated from the Rocky Mountain 
subspecies (FST = 0.04).  Together, findings suggest that the southern Oregon SNRF population, like those 
in California, has suffered a severe decline since historical times.  However, the norther Oregon SNRF 
population appears to be connected by recent or ongoing gene flow to the Rocky Mountain subspecies, 
with the most likely conduit being through the Blue Mountain ecoregion in the northeast portion of the 
state.  Reference samples of nonnative populations (ultimately from fur farms) and Rocky Mountain red 
foxes from their native range in northeastern Oregon are necessary to clarify the origins of the population 
in the northern Cascades.  

Evidence of introgression from nonnative red fox was limited to 3 individuals on Mount Hood that 
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carried known fur-farm mitochondrial haplotypes (G-38). The likely immediate source of this 
introgression was the adjacent low-elevation habitats of the Columbia River Gorge and Interstate 
Highway 84 (I-84) corridor. However it is unclear whether nearby low-elevation foxes carrying G-38 
haplotypes are truly nonnative or whether they are expanding Rocky Mountain red foxes that reflect a 
small amount of nonnative introgression. 

We recommend prioritizing conservation of Sierra Nevada red fox in the southern portion of the 
Cascades, as red fox in this region appear to be most vulnerable and to represent the most pristine 
remnant of SNRF ancestry of the Oregon Cascades. However, range-wide occupancy and genetic surveys 
of the potential distribution identified in this study are needed to determine the current distribution, 
abundance, home range size, survival, recruitment, and density.  Additional genetic sampling is needed, in 
particular, to facilitate comparison of red foxes in the northern Cascades to reference samples of fur-farm 
founded populations and endemic Rocky Mountain populations within Oregon.   

Disclaimer:  

This report was produced in fulfillment of Oregon Department of Fish and Wildlife Agreement No. 379-
15 with the University of California, Davis, and was intended to serve as a tentative synopsis of research 
findings. However, future peer-reviewed publications stemming from this study will supersede this report. 
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Introduction 
The Sierra Nevada red fox (SNRF; Vulpes vulpes necator) is one of three subspecies of montane red fox 
that are endemic to the mountain ranges of western North America. Historically, SNRF occurred 
throughout the Pacific Crest mountain ranges of California and Oregon (Bailey 1936, Grinnell et al. 
1937). During the 20th century, SNRF populations in California declined precipitously. At present, only 
two known populations occur in California with total numbers estimated to be <50 individuals (Quinn and 
Sacks 2014, Sacks et al. 2015); currently little information exists on the status and distribution of SNRF 
in Oregon (Hiller et al. 2015).  

The SNRF is currently listed as a state Threatened Species in California, a USDA Forest Service 
Sensitive species in the Intermountain (R4), Pacific Southwest (R5), and Pacific Northwest (R6) regions, 
and a Strategy Species in the Oregon Conservation Strategy (2015). In 2011, the subspecies was 
petitioned for listing throughout its range under the US Endangered Species Act. Following a 12-month 
review, the United States Fish and Wildlife Serviced determined in 2015 that the SNRF population in the 
Sierra Nevada warranted listing as a distinct population segment (DPS; precluded by higher priorities), 
but declined to recommend listing for the Lassen or Oregon populations, which were grouped together in 
a single Southern Cascades DPS (U.S. Fish and Wildlife Service 2015a,b). 

The decision to treat southern Cascades populations of California and Oregon as a single DPS and not to 
recommend listing was based on of the absence of information regarding the current status of SNRF in 
Oregon as well as their presumed connectivity to the Lassen population (U.S. Fish and Wildlife Service 
2015b). A genetic study using historical museum SNRF specimens found that by mid-century, samples 
from the southern Cascades (including Lassen, Shasta [now presumed extirpated], and Oregon) were 
already somewhat isolated from those from the Sierra Nevada mountains to the south (Sacks et al. 2010). 
Modern samples collected from the two remaining California populations in the California Cascades 
(Lassen) and the Sierra Nevada (Sonora Pass) indicated a complete lack of contemporary gene flow 
(Statham et al. 2012a). Until recently, no modern samples from Oregon have been available to assess the 
connectivity between the populations in southern Oregon and Lassen that make up the Southern Cascades 
DPS. 

Over the past 6 years, agencies and organizations have accumulated georeferenced reports, photographs, 
and genetically identified samples collected incidentally or during surveys for SNRF or other forest 
carnivores (e.g., Hiller et al. 2015). These recent detections were consistent with the elevation and habitat 
profile of the historical population and have spurred optimism that SNRF could be more plentiful in the 
Oregon Cascades than in the southern part of their range in California (U.S. Fish and Wildlife Service 
2015b). Detections ranged as far north as Mount Hood and as far south as Crater Lake National Park. 
These detections clustered into sighting areas separated by 50–100 km (U.S. Fish and Wildlife Service 
2015a). Whether these occurrences represented isolated populations of individuals or a single, 
continuously distributed but poorly sampled population, was unclear. Few museum or other records exist 
to provide a historical baseline of the distribution, density, and connectivity of SNRF in Oregon, although 
natural history accounts agree that SNRF were generally concentrated in the park-like mosaic of open 
subalpine forests and wet meadows in the high-elevation (>1,219 m) portions of the Cascade Range 
(Bailey 1936, Ingles 1965, Aubry 1983, Verts and Carraway 1998).  

The occurrence of another native montane subspecies, as well as nonnative red foxes, in Oregon also 
necessitates assessing the genetic integrity of SNRF. The Rocky Mountain red fox (V. v. macroura), which 
historically occurred in the Blue Mountain and Wallowa Ranges in the northeastern corner of the state 
(Bailey 1936; Aubry et al. 2009), has recently increased in abundance and broadened its range to include 
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lower elevation habitats, such as cultivated farmland (Green et al., in press). Additionally, fur farms in 
Oregon started utilizing nonnative red foxes during the 20th century (Verts and Carraway 1998) and 
individuals were known to have escaped or been released from captivity. Although nonnative red foxes 
typically occur in close proximity to humans in urban and disturbed landscapes (Statham et al. 2012b, 
Sacks et al. 2016, Merson et al. 2017), they can interbreed with native populations where they come into 
contact. Consequently, nonnative fur-farm genes have introgressed into multiple native red fox 
populations throughout the western U.S. (e.g., Sacks et al. 2011; Quinn and Sacks 2014; Merson et al. 
2017; Green et al., in press).  

Our objectives in this study were to provide an initial characterization of the potential range, effective 
population size, connectivity, and genetic distinctiveness of SNRF in the Oregon Cascade Range. We used 
two complimentary approaches to meet our objectives. First, we used occurrence records of red foxes in 
conjunction with environmental covariates to develop a predictive model of potential SNRF distribution 
in the Oregon Cascades. This model was produced to guide future survey efforts as well as to provide a 
spatially explicit context for mapping genetic connectivity within Oregon. We modeled the distribution in 
a maximum entropy framework using Maxent software (Phillips et al. 2006, Phillips and Dudík 2008). 
Second, we analyzed genetic samples collected in and adjacent to the Cascades using a combination of 
maternally, paternally, and bi-parentally inherited genetic markers. We analyzed genetic samples for 
evidence of substructure within the Cascades, and estimated genetic effective population size and 
diversity within and pooled across subpopulations. We additionally investigated contemporary genetic 
connectivity of Oregon SNRF to neighboring montane populations using previously published reference 
data.  

 

Methods 
Field Data Collection 

In collaboration with biologists from multiple state and federal agencies and non-governmental 
organizations, we amassed red fox genetic samples collected during 2012–2016 (n = 78; Table 1; Fig. 1) 
along with photographically documented (Fig. 1) and unverified red fox sightings during 1985–2016 (n = 
97; Appendix 1), from Deschutes, Mount Hood, Umpqua, and Willamette National Forests, and Crater 
Lake National Park, which collectively encompass the majority of potential SNRF habitat within Oregon. 
These samples and records (n = 175) were derived opportunistically and from targeted surveys that varied 
in intensity, duration, and coverage. Methodologies included ad hoc and systematic baited camera surveys 
(Hiller et al. 2015), scat searches and hair snares, opportunistic visual sightings, and a small number of 
road-killed foxes. Fecal samples were stored in 95% ethanol; hair and tissue were stored in desiccant until 
DNA extraction and species identification (see Laboratory Analyses).  

Species Distribution Modeling  

We modeled species distribution in Maxent version 3.2.1 (Phillips et al. 2006), chosen for its flexibility in 
use of presence-only data and robustness to small sample sizes (Hernandez et al. 2006, Wisz et al. 2008). 
As with other approaches to modeling species distributions, Maxent uses statistical associations between 
occurrence localities and environmental correlates to project regions in environmental space similar to 
detection sites.  

Occurrence Records — We considered only samples that fell within the East Cascades or West Cascades 
ecoregions, as defined by the Oregon Conservation Strategy (2016), which led to exclusion of 6 genetic 
samples east or north of these ecoregions. The different types of data available for analyses likely entailed 
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different biases with unknowable effects on distribution models. In particular, reliance solely on the most 
reliable presence data (digital images, genetic detections) entailed greater spatial bias as surveys 
collectively reflected a relatively small portion of the available landscape. Conversely, sightings, which 
represented opportunistic sampling of a comparably large fraction of the landscape, were more vulnerable 
to false positives. Therefore, we built models based on two datasets and considered the extent of model 
agreement to be an indicator of model robustness and, to the extent that they disagreed, considered each 
to reflect an opposite end of a range of potential distributions. The confirmed occurrence dataset (n = 124) 
included digital images (n = 52) and genetic detections (n = 72) recently collected (2010–2016), whereas 
the inclusive dataset (n = 169) was composed of the same 124 records plus another 45 records of 
unverified sightings spanning a greater interval of time (1985–2016). To reduce pseudoreplication owing 
to spatially nonrandom sampling, we filtered occurrence records to retain only one record in a 4-km2 
neighborhood (Boria et al. 2014), which provided a reasonable balance between spatial independence and 
sample size. The filtered dataset resulted in 33 occurrences for the confirmed data set and 62 occurrences 
for the high-inclusivity dataset. 

Spatial extent and background points — Maxent models are sensitive to the spatial extent of available 
habitat (background) used for model training (Lobo et al. 2008, Elith et al. 2011). To limit model training 
to areas more likely to have been surveyed, we restricted background extent to the vicinity of occurrence 
localities. Specifically, for each dataset (i.e., confirmed, inclusive) we buffered occurrence points using a 
20-km radius and randomly sampled a total of 10,000 points within the cumulative buffered area for use 
as background points in model development. The distribution of genetic samples from non-target species 
(which were not used in modeling) provided an approximate sense of the survey area beyond our SNRF 
detections, which corresponded well to the 20-km buffer distance (Fig. 1). We then projected distribution 
models to the entirety of both Oregon Cascades ecoregions (hereafter, the “Cascades ecoregion”). 

Environmental Variables — We initially assembled 29 environmental layers to characterize aspects of 
climate, topography, and vegetation across the available landscape (Appendix 3). We extracted 14 
bioclimatic variables from the WorldClim database (Hijmans et al. 2005) derived from temperature and 
precipitation. We substituted 5 WorldClim values (BIO1, BIO5, BIO6, BIO12, BIO 19) for corresponding 
climate data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly et al. 
1994). PRISM is another climate model that uses point data and digital elevation models to generate 
gridded estimates, and has been shown to perform well in mountainous terrain (Daly et al. 1994). 
Specifically, we used 30-year normal data sets to extract layers of annual precipitation totals and 
temperature extremes, as well as monthly estimates for winter (Dec.– Feb.) and summer (June–Aug.) 
seasons. 

We derived 3 topographic layers from the US Geological Survey 1 arc-second global digital elevation 
model. We used the terrain function in R package raster (Hijmans 2016) to calculate slope, roughness (the 
difference between the maximum and minimum elevation value of a cell and its surrounding neighbors), 
and aspect. We transformed aspect to a continuous variable between 0 and 1 by taking the absolute value 
of degrees after normalization (McCune et al. 2002, Kalle et al. 2013). This transformed aspect depicts 
incident radiation, but can be interpreted as “southness” as the value approaches 0 at northerly aspects and 
1 at southerly aspects.   

We used 2 variable sets to characterize vegetation type and vertical structure. We obtained vegetation 
land-cover layers from the Northwest ReGAP Ecological System (2010; 
http://inr.oregonstate.edu/existing-vegetation), a national project that uses 30-m Landsat satellite data to 
map ecological land-cover classes (http://gapanalysis.usgs.gov). We adjusted existing land-cover 
categories to group agriculture and development into a single “disturbed” category, and we lumped 
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“Siskiyou Mixed Conifer Forests and Woodlands” with “Mixed Conifer Forests” (Appendix 3). 
Additionally, we used percent canopy cover to characterize density at a finer scale within forest types 
(LEMMA GNN https://lemma.forestry.oregonstate.edu/data/structure-maps). 

After assembling and resampling all layers to a resolution of 30 arc-seconds (~0.83 km2), we reduced the 
full suite of variables to the least correlated subset to encourage simpler, more interpretable models 
(Dormann et al. 2013). Using the vif.cor function in R package usdm (Naimi 2015), we identified the pair 
with the highest linear correlation, and excluded the variable that possessed the highest variance inflation 
factor (VIF), an index of collinearity derived from regressing the predictor variable against all other 
variables. We iterated this process until all remaining variables had a pairwise correlation below a 
threshold of 0.7. After pruning for collinearity, we conducted no further selection of variables prior to 
modeling, but allowed the internal regularization function within the Maxent algorithm to select the most 
informative variable transformations.  

Finally, as a heuristic check on modeled relationships, we investigated the relationships between the raw 
occurrence data and range of environmental conditions available on the study area. We created selection 
indices log-transforming the ratio of observed to expected proportion of occurrence records (+1 to avoid 
division by zero), and subtracting log(2) so that positive and negative values corresponded to greater and 
less use relative to expectations, respectively (e.g. Neale and Sacks 2001). We visually inspected selection 
indices for evidence of strong relationships (e.g. linear, quadratic) between red fox occurrence and 
environmental conditions, and compared these to functional forms modeled by Maxent. We also 
qualitatively compared the identity of the variables with the strongest relationships to their percent 
contribution, a path-dependent proxy for variable importance calculated during the Maxent fitting 
process. 

Modeling —Maxent limits model complexity internally through regularization. Similar to the lasso 
technique used in generalized linear models, regularization adds a penalty term to each non-linear 
transformation of an environmental variable (i.e. feature), effectively shrinking model coefficients toward 
zero (Merow et al. 2013). Higher regularization thus minimizes the number and functional forms that 
transformations can take, resulting in simpler models with fewer parameters. Simultaneously, 
regularization relaxes the constraint that the environmental covariates associated with the predicted 
distribution empirically match those of the occurrence data; as a result, higher regularization values also 
tend to generate smoother, more uniform probability distributions.  

Regularization coefficients in Maxent are individually preset for each feature class (e.g. linear, quadratic, 
product), but users can adjust the strength of all penalties simultaneously through use of a multiplier 
constant (referred to hereafter as β). Phillips et al. (2006) suggested the default setting (β = 1) is sufficient 
for multi-species modeling, but more recent work strongly advocates species-specific tuning of this 
multiplier (e.g., Warren and Seifert 2011, Shcheglovitova and Anderson 2013, Radosavljevic and 
Anderson 2014). Optimizing regularization for a given study system has been shown to prevent 
overfitting and improve prediction accuracy (Shcheglovitova and Anderson 2013, Radosavljevic and 
Anderson 2014), particularly for models built from small numbers of geographically biased records 
(Anderson and Gonzalez 2011). 

To identify optimal levels of model complexity, we built models in the R package ENMeval (Muscarella 
et al. 2014) for each dataset using a range of values for the regularization multiplier (β = 0.5–6 in 
increments of 0.5), and considered only linear, quadratic, and product feature classes (transformations). 
We selected the optimal regularization setting based on the model’s ability to predict data withheld from 
model training. Spatial correlation among training and testing data consistently overestimate model 
performance, as presence points close in geographic space are typically close in environmental space 
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(Hijmans 2012, Radosavljevic and Anderson 2014). As a result, evaluation metrics are especially 
misleading when occurrence points are clustered. We opted instead to manually partition presence and 
background points into spatially independent folds for cross-validation, using latitude to split points into 
three bins (i.e., spatial folds) of equal sample size (latitudes for sightings: Bin A, <43.150; Bin B, 43.150–
43.987; Bin C, >43.987; latitudes for confirmed: Bin A, <43.600; Bin B, 43.600–44.194; Bin C, >44.194). 
Each modeling iteration was trained using two of three partitions while the third partition was withheld 
for model evaluation.  

We assessed relative overfitting using the average area under the receiver operating curve (AUC) value of 
the held-out partition (AUCTEST) and the difference between training and test AUC values (AUCDIFF). The 
AUC indicates how well the model correctly ranks test presence points above background points (Phillips 
et al. 2006), and serves as a threshold-independent indicator of a model’s ability to discriminate between 
low and high probabilities of occurrence. With presence-only data, AUC treats background points as 
absences, which can create misleading evaluations when used as an absolute indication of model quality 
for species like SNRF with low prevalence and low sampling effort (Lobo et al. 2008, Peterson et al. 
2008, Bean et al. 2012, Merow et al. 2013) Here, we used AUC to rank models built from the same 
datasets with differing levels of complexity. We chose selected optimal regularization settings by 
balancing gains in average test AUC (AUCTEST; predictive power) with increases in the difference 
between test and training AUC (AUCDIFF; overfitting). To allow comparison between spatial folds, we 
trained models using the spatially binned background points described above, but calculated AUC values 
using the full set of background points.  

Optimal regularization settings were applied to the final models, which were then parameterized using the 
entire dataset. We transformed raw predictions using the logistic transformation for visualization purposes 
and comparison among models, but treated these values as ordinal indexes of the probability of 
occurrence as opposed to true probabilities of occurrence (Yackulic et al. 2013).  

Finally, we used two levels of model thresholds for the purposes of qualitatively comparing models and 
stratifying the landscape for future surveys. Thresholding decisions always entail some degree of 
arbitrariness, and some of the most commonly used approaches (e.g. lowest presence threshold) are 
sensitive to small sample size (Loiselle et al. 2003, Bean et al. 2012). We decided thresholds for the most 
restrictive model using an approach that attempts to balance sensitivity and specificity (Engler et al. 
2004), and then applied these criteria uniformly to the other models to allow comparison. Specifically, we 
chose threshold values that maximized the difference between the proportion of presence sites versus the 
proportion of the study area where presence was predicted, i.e., maximizing the model’s discriminatory 
power.  

 

Genetic Structure and Diversity 

Laboratory Analyses 

We conducted DNA extraction, PCR amplification, sequencing, and genotyping at the Mammalian 
Ecology and Conservation Unit of the Veterinary Genetics Laboratory at the University of California, 
Davis. We extracted DNA from feces (n = 362) using QIAamp (R) Stool Kit, and from hair (n = 24) and 
tissue (n = 3) using DNeasy Blood and Tissue Kits (Qiagen Inc., Valencia CA). For fecal and tissue 
samples, we followed manufacturer’s instructions for the corresponding kit. For hair samples, we 
modified the manufacturer’s protocol by digesting a 0.5–1 cm length of hair, including the follicle, from 
1–20 hairs to 300 μl Buffer ATL, 20 μl proteinase K, and 20 μl 1M DTT; subsequent steps followed 
manufacturer’s protocol. To prevent and detect contamination, we extracted DNA from feces and hair 
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with negative controls on a bench dedicated to low-quantity DNA. 

Overview of molecular markers — We used several types of genetic marker. We used DNA sequences 
from the mitochondrial genome (mtDNA) to identify species and, for red fox, to assess origin of maternal 
ancestry. We used a marker associated with Amelogenin gene paralogs on X and Y chromosomes to 
identify sex of foxes. For males, we used Y chromosome microsatellites to assess the paternal line. For all 
foxes, we used autosomal nuclear microsatellites (31 loci) to determine individual identity, familial 
relationships, genetic diversity, and population identity and connectivity.  

Because of our use of noninvasive samples, we obtained multiple samples for some individuals. 
Therefore, for efficiency, we performed analyses in the following order: (1) sequence of mtDNA at 354 
bp of cytochrome b gene (cyt b) to determine species, (2) genotype autosomal microsatellites and sex-
marker to determine individual (and sex), (3) sequence 343 bp of the mtDNA D loop region (one sample 
per individual) and, for a subset of these samples, (4) sequence 200 additional bases of the cytochrome b 
gene; lastly, (5) we genotyped one sample for each individual male at the Y chromosome microsatellites. 
Below, the technical specifics of the sequencing and genotyping are described.  

MtDNA — We attempted to sequence all samples at the 354-bp portion of the cyt b locus of the mtDNA 
using previously published primers (RF14721, RF15149; Perrine et al. 2007). To sequence the 343-bp 
portion of the D Loop, we used primers VVDL1, VVDL6 (Aubry et al. 2009) and concatenated it with the 
354-bp cyt b fragment for comparison with a growing database of previously published haplotypes 
(Aubry et al. 2009, Statham et al. 2014, many others). The nomenclature for these concatenated 
haplotypes followed previous studies; specifically, the cyt b fragment was indicated by a letter or letter-
numeral combination before a dash and the D loop fragment was indicated by a numerical reference after 
the dash, e.g., ‘A-19.’ Because haplotype A-19 is a widespread haplotype ancestral to all other haplotypes 
within the mountain subclade (see Data Analyses), we further resolved A-19 haplotypes by sequencing at 
an additional 200 bp of the cytochrome b gene (primers VVmc-780F and VVmc-980R; Volkmann et al. 
2015). These primers amplified a SNP at bp-position 889 discovered by Volkmann et al. (2015) that 
divides haplotype A-19 into two subhaplotypes distinguished by 7 mutations in the broader 
mitochondrial genome (Figs 2A, 3 in Volkmann et al. 2015). For all sequencing reactions we used 
methods, reagents, and thermal-cycling conditions described previously (Perrine et al. 2007, Aubry et al. 
2009, Volkmann et al. 2015).  

Nuclear Microsatellites — We genotyped red fox samples at 31 microsatellites (AHT121, AHT137, 
C04.140, FH2004, FH2289, Vv-V142, V402, V468, V602, Vv-AHTh171, Vv-C01.424, Vv-C08.618, Vv-
CPH11, Vv-CPH18, Vv-CPH2, Vv-CPH3, Vv-CXX-279, Vv-FH2001, Vv-FH2010, Vv-FH2054, Vv-
FH2088, Vv-FH2328, Vv-FH2380, Vv-FH2457, Vv-FH 2848, Vv-INU030, Vv-INU055, Vv-
REN105L03, Vv-REN 162C04, Vv-REN169O18, Vv-REN247M23, Vv-REN54 P11) and a sex marker, 
K9-AMELO (Wandeler and Funk 2006, Moore et al. 2010). We conducted PCRs in five multiplex groups 
(Moore et al. 2010) using the Qiagen multiplex kit with Q-solution and thermal profile recommended in 
the manufacturer’s protocol, with an annealing temperature of 58 °C. We electrophoresed PCR products 
on an ABI 3730 capillary sequencer (Applied Biosystems, Foster City, CA, USA) and scored alleles 
relative to an internal size standard, Genescan 500 LIZ (Applied Biosystems) in program STRand 
(Toonen and Hughes 2001). We replicated all genotypes 2 to 8 times to detect false alleles and correct for 
allelic dropout, and excluded genotypes from downstream analyses that were missing alleles at 3 loci.  

Y-microsatellites — We genotyped 12 microsatellites located on the Y-chromosome for distinct 
individuals using the same procedures outlined above (VVY10, VVY11, VVY13, VVY14, VVY16, 
VVY17, VVY3, VVY5, VVY7, VVY8, Y29, Y30; Statham et al. 2014; Rando et al., in review). As the Y-
chromosome does not undergo recombination, we allowed for incomplete haplotypes (>7 loci amplified) 
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and imputed missing alleles. This approach is conservative in that it may fail to detect new haplotypes, 
but can be used to exclude previously sampled haplotypes and provide minimum estimates of patrilineal 
diversity.  

Data Analyses 

Species typing, individual identification, and familial relationships— We used the Basic Local Alignment 
Search Tool (BLAST; Altschul et al. 1990) in conjunction with cyt b haplotypes to search for 
homologous sequences in Genbank. For samples identified as red fox (based on 98% sequence 
homology), we then identified them to individual of a particular sex as follows: Genotypes that matched 
at >85% of loci in AlleleMatch (Galpern et al. 2012) were assumed to be the same individual and 
consolidated to create a consensus genotype. We identified family groups that could skew tests of genetic 
differentiation using an exclusion-based parentage analysis in Cervus (allowing for up to two trio 
mismatches) (Kalinowski et al. 2007), and conservatively assuming that individuals sampled from the 
same sighting region and sharing >55% of alleles were first-order relatives. 

Population structure within the Oregon Cascades — We used a Bayesian clustering algorithm to group 
individuals according to their autosomal microsatellite genotypes in Structure v. 2.3.4, using the 
admixture model with correlated allele frequencies and no prior information (Pritchard et al. 2000, Falush 
et al. 2003). First, to determine the appropriate number of genetic clusters (K), we ran 10 independent 
iterations at K = 1–8 for 30,000 MCMC repetitions, discarding the first 10,000 as burn-in. We 
implemented two methods to select the appropriate K value in Structure Harvester (Earl 2012): one that 
maximizes the log probability of the data (Pritchard et al. 2000) and a second based on the rate of change 
of the log probability of the data between successive iterations (delta-K method; Evanno et al. 2005). We 
performed a final run at the indicated number of clusters (K) using 1,100,100 MCMC cycles, discarding 
the first 100,000 as burn-in, and used these estimated proportion of ancestry (q) to assign individuals to 
populations. Finally, because closely related individuals can artificially create the appearance of 
substructure with a small number of samples, we performed an additional run of the above analyses on a 
subset of individuals that excluded putative first-order relatives. 

Maternal and paternal ancestry—The shared ancestry of all montane subspecies prevented determination 
of whether a maternal haplotype (e.g., A-19) was endemic to the Oregon Cascades or originated in 
another montane population. However, we could use mitochondrial haplotypes to differentiate native 
from nonnative maternal ancestries. Populations founded from nonnative fur-farm foxes share a common 
set of haplotypes throughout the US (Statham et al. 2012b, Kasprowicz et al. 2016, Sacks et al. 2016, 
Merson et al. 2017), and because breeding stock was traded originally from Alaska and eastern Canada 
(Balcom 1916, Laut 1921), these haplotypes are distinct from native montane haplotypes (Aubry et al. 
2009). The only montane haplotype that has also been used in fur farms and observed in nonnative 
populations is O-24, a haplotype historically found only in the Washington Cascades (Sacks et al. 2010; 
Lounsberry et al. 2017). We therefore considered any haplotype previously sampled in fur-farms, or 
originating from the Eastern or Alaskan clades, as indicative of past gene flow with fur-farm-derived 
foxes. The Y-chromosome markers were only recently developed (Rando et al., in review). Therefore, we 
did not have sufficient reference data to assign Y microsatellite haplotypes to a particular geographic 
origin. However, Y markers served as indicators of patrilineal genetic diversity and population structure.  

Genetic Diversity— We estimated indices of genetic diversity for the total sample and for samples 
corresponding to discrete populations identified in program Structure. We tested for departure from 
Hardy-Weinberg proportions (FIS) across loci in FSTAT v. 2.9.3 (Goudet 2001). We assessed significance 
by comparing the observed value to random permutations of alleles within samples, after adjusting for 
multiple tests using sequential Bonferroni correction (Rice 1989). We estimated observed heterozygosity 
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(Ho) and expected heterozygosity (He, i.e., under Hardy Weinberg equilibrium) in Microsoft Toolkit (Park 
2001), and allelic richness in FSTAT. We estimated the genetic effective population size (Ne) of each 
population based on the decay of linkage equilibrium in LDNE (Waples 2006, Waples and Do 2008), 
excluding alleles with frequencies <0.02 and using jackknife-based confidence intervals. For each 
population, we estimated Ne under the assumption of monogamy and random-mating.  

Connectivity to other montane populations — We used three independent approaches to assess the 
relationship of populations in the Oregon Cascades to other montane subspecies. First, we used the 
model-based Structure algorithm to assess how Oregon samples clustered with previously published 
(Sacks et al. 2010) autosomal microsatellite genotypes at the same 31 loci from the contemporary Lassen 
population in northern California (V.v. necator; n = 12), the Washington Cascades (V.v. cascadensis; n = 
5), and the Rocky Mountains in Idaho, Colorado, Wyoming, and Nevada (V.v. macroura; n = 22). We 
used the methodology outlined above to determine the optimal number of clusters, but because we were 
interested in assessing the relationships among groups (versus assignment to pre-defined populations), we 
evaluated Structure results at multiple K-values. 

Second, to support Structure results and visualize the relationships among individuals with no 
assumptions about Hardy-Weinberg or linkage equilibria, we subjected the same group of montane 
samples to a multivariate distance-based approach. Specifically, we used principal components analysis 
(PCA) to summarize the variability in microsatellite allele frequencies among individuals in R package 
adegenet (Jombart 2008), which provided an indication of the relative dissimilarity among groups in two-
dimensional space. Lastly, we computed pairwise estimates of FST, a commonly reported measure of 
genetic distance, in FSTAT. 

Results 
Based on 169 detections (genetic samples, photographs, sighting reports; 1985–2016), red fox occurrence 
was nonrandomly associated with land-cover type and minimum January temperature (Fig. 2). Montane 
meadows, silver fir and mountain hemlock forests, subalpine woodlands, and alpine habitats all had more 
observed red fox detections than expected based on the composition of available habitat. In contrast, 
although disturbed land-cover types, mixed conifer forest, and ponderosa pine together accounted for 
40% of red fox presence points, red foxes were observed less frequently in these land-cover types than 
expected. Red fox occurrence was disproportionately concentrated in locations with intermediate 
minimum January temperatures, specifically in the range, -7.5 to -4.5 °C. No clear selection trends were 
apparent relative to other environmental gradients (Appendix 4).   

Species Distribution Modeling  

After filtering variables based on VIF, the final 9 variables subjected to modeling were minimum 
temperature in January, total precipitation in December, precipitation seasonality (standard deviation of 
precipitation), temperature seasonality (standard deviation of temperature), isothermality, transformed 
aspect, roughness, percent canopy cover, and land-cover type. Based on 124 confirmed detections 
(genetic samples [see below], digital images; 2010–2016) or 169 inclusive detections (verified detections, 
2010–2016 plus unverified sighting reports, 1985–2016), land-cover type and minimum January 
temperature were the highest contributing variables in all Maxent models, together accounting for 75–
90% contribution across final models (Table 2). Meadows consistently had large positive coefficients (λ) 
in all Maxent models, while other land-cover variables positively influenced the probability of red fox 
occurrence but varied in strength depending on regularization (Appendix 5). Higher minimum January 
temperatures exhibited a strong negative influence on the probability of occurrence in all models.  

In both datasets, intermediate regularization settings improved predictions of spatially independent data 
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(Table 3; Fig. 3). We selected optimal regularization values at the point where increasing regularization no 

longer exhibited significant rates of change in AUCTEST and AUCDIFF (β = 3 for confirmed; β = 2.5 for 
inclusive). Optimizing regularization effectively reduced the number of parameters from 15 to 7 in the 
confirmed dataset, and 19 to 11 in the inclusive dataset. Across all settings, the confirmed dataset showed 
higher variability of performance among spatial folds, as well as larger AUCDIFF values, suggesting an 
overall greater statistical vulnerability to overfitting (Fig. 3).  

Visual inspection of model projections over a range of regularization settings consistently revealed a 
narrow longitudinal strip along the Cascade crest as the region with the highest probability of occurrence 
(Fig. 4). In contrast, occurrence probabilities for the eastern slope of the Cascades were highly sensitive to 
regularization, but, in general, rarely exceeded intermediate values. 

To dichotomize the model, we chose threshold probability values from the confirmed dataset with default 
regularization, as it resulted in the most restricted distribution. We identified two clear maxima in the 
difference between the proportion of study area and the proportion of fox points included in the predicted 
area (Appendix 6). The lower threshold (0.27) yielded a more permissive threshold that predicted 12% of 
Cascades ecoregion as potential range (35% of buffered background points) and correctly assigned 91% 
of confirmed red fox points (Table 4). The more restrictive probability threshold (0.50) assigned 4% of 
the Cascade ecoregion (16% of buffered background points) as predicted habitat and resulted in 73% of 
the confirmed red fox localities correctly predicted. When the more restrictive threshold was applied 
across all models, on average 6% (3,470 km2 SD 846 km2) of the Cascades ecoregion was predicted as 
high probability of presence (Table 4). The models built from the inclusive dataset that included sightings 
predicted a larger potential range than the confirmed dataset at both threshold decisions (Table 4). 

Genetic Structure and Diversity 

Species typing, individual identification, and familial relationships — We successfully amplified cyt b 
sequences from 310 of 389 samples (80%), yielding 78 samples species-typed as red fox and 232 non-
target species (Table 5). Of these, 42 (54%) samples amplified a sufficient number of microsatellite loci 
to provide usable genotypes, resulting in 22 individual red foxes (Table 1). Seventeen individuals 
sampled along the Cascade crest clustered into four regions: Mount Hood (n = 4), a 50-km stretch 
centered on the Three Sisters (n = 4), a tight cluster around Willamette Pass (n = 5), and Crater Lake 
National Park (n = 4) (Fig. 6). Four individuals were sampled adjacent to the Cascades ecoregion in 
human-settled areas not typically associated with Sierra Nevada red fox (Hood River: n = 1; Bend n = 4). 
Finally, one individual was incidentally sampled from Malheur County and assumed a priori to be either a 
nonnative fur-farm or Rocky Mountain red fox (e.g., Green et al., in press).  

Seven individuals were sampled multiple times (range = 2–7 detections), with inter-individual distances 
9.4 km (Fig. 6). Based on parentage analyses, we identified a mated pair and 2 offspring sampled in 

2014 from the Willamette Pass area. Additionally, 2 hair samples collected near a den outside of Bend 
showed allele-sharing consistent with full sibling-ship. 

Maternal and paternal ancestry — Among the 22 individuals identified based on microsatellite 
genotypes, 18 possessed A-19 maternal haplotypes and 4 possessed G-38 haplotypes (Table 6). The G-38 
haplotypes were found in 3 individuals on Mount Hood and one individual outside Hood River. Of the 31 
samples that could not be assigned to individual based on microsatellite genotypes, 25 were A-19 
(including 21 complete sequences, 4 partial sequences), and 4 were G-38. These G-38 samples also were 
collected on Mount Hood, near the individually genotyped samples with G-38 haplotypes.  

Additional targeted sequencing demonstrated a geographic break within A-19 samples along the north-
south axis of the Cascade Range (Fig. 8b). The A-19 haplotypes south of U.S. Route 20 and west of Bend 
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(n = 12) exhibited subhaplotypes that corresponded to w1, w2, or w3 in Volkmann et al. (2015), hereafter 
collectively referred to as A-19a, and haplotypes north and west (n = 5) corresponded to haplotypes w6, 
w7, or w8, hereafter collectively referred to as A-19b. Both subhaplotypes had been previously sampled in 
museum specimens (Volkmann et al 2015). 

Nine of 12 males (75%) amplified >7 microsatellite loci on the Y chromosome, yielding 4 paternal 
haplotypes (Table 6). All individuals south of U.S. Route 20 (mentioned strictly as a convenient 
landmark) carried a single paternal haplotype (n = 5), whereas the 4 individuals sampled near Bend and 
Mount Hood possessed 3 distinct haplotypes (the 2 individuals with shared haplotypes were putative 
siblings from Bend) (Fig. 8c).  

Population structure within the Oregon Cascades — Bayesian structure analyses conducted within the 
Oregon Cascades using autosomal microsatellite genotypes indicated strong support for genetic clusters 
geographically segregated into northern and southern groups, with a geographic break that mirrored the 
discontinuity in mitochondrial markers and Y chromosome, i.e., corresponding approximately to U.S. 
Route 20 (Fig. 7, 8).   (q > 0.9), with the exception of three individuals sampled near U.S. Route 20 
that showed proportion of ancestry intermediate between the two groups. Notably, one individual sampled 
from Crater Lake National Park at the southern extent of the known range strongly assigned to the 
northern cluster. The sample from Malheur County, 150 km east of the Cascades, also consistently 
grouped with the northern cluster, even at higher K values. Removing putative first-order relatives from 
Structure runs had no qualitative influence on assignment of ancestry (data not shown). 

Genetic diversity —Tests for Hardy-Weinberg proportions showed a significant excess of heterozygotes 
relative to expectations when estimated across all samples (Table 7). When individuals were sorted into 
populations according to their K-values, the northern cluster did not significantly deviate from Hardy-
Weinberg proportions and the southern cluster exhibited a significant excess of heterozygotes. The 
southern cluster possessed markedly lower estimates of nuclear genetic diversity and effective population 
size relative to the northern population, and were slightly higher but close in magnitude to estimates for 
the Lassen population. 

Relationship to other montane populations — We combined Oregon samples with previously published 
contemporary samples of montane red foxes from Lassen, Washington, and the Rocky Mountains (Sacks 
et al. 2010) to characterize clustering over a broader spatial scale. Structure analyses showed strong 
support for the southern cluster as a distinct population (Fig. 9). The Lassen population was the first to 
break out at K = 2, followed by the southern Oregon samples at K = 3. At K = 4, the Washington Cascade 
foxes split into a distinct cluster, which left northern Oregon and the Rocky Mountains as one 
undifferentiated cluster. Higher K-values caused the Rockies to disaggregate; at no K-value did the 
northern Oregon samples split as a population distinct from the Rocky Mountains. 

The PCA supported the relationships suggested by the Bayesian clustering approach. The first principal 
component (12.5% variance explained) separated Lassen from the larger group; the second principal 
component (8.8% variance) separated the southern Oregon samples, and the third principal component 
(6.4% variance) showed the Washington Cascades as distinct from the Rocky Mountains (Fig 10). The 
Rocky Mountains and northern Oregon samples overlapped in all three dimensions.  

The pairwise genetic distances among southern Oregon and the two California populations were large and 
similar in magnitude (FST = 0.34–0.40; Table 8). The lowest pairwise distance among all montane 
populations occurred between samples from northern Oregon and the Rocky Mountains. 
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Discussion 
Species Distribution Modeling  

We combined disparate sources of SNRF detection data to maximize distributional information and 
generate predictive surfaces of relative probabilities of occurrence for SNRF in the Oregon Cascades. We 
used thresholds to discretize surfaces to facilitate stratification of survey units into predicted presence, 
and provided continuous predictions that preserve relative probabilities for use in selection of micro-sites 
within survey units and quantification of uncertainty. Such predictive layers have the greatest value for 
rare species when used in an adaptive framework: models enable more efficient survey design, and in turn 
new detections are fed back into the model to improve accuracy and generality, as each iteration of data 
collection diminishes geographic bias (Guisan et al. 2006). Maxent predictions also can be used as the 
basis for designing a comprehensive range-wide presence-absence survey that systematically incorporates 
predicted-presence and predicted-absence sites to estimate occupancy (e.g., Preckler-Quisquater et al. 
2017).  

We produced 4 final models that varied in the stringency of input data (confirmed, inclusive) and model 
complexity (regularization settings). Models differed in the areal extent for predicted presence, with 
inclusive > confirmed, and higher regularization > default settings. The model with default settings and 
confirmed data generated the most restrictive prediction with the highest discriminatory power, and the 
model built from the inclusive dataset that incorporated sighting and higher regularization was the most 
permissive model, presumably with the greatest generality and least overfitting. We suggest the most 
permissive (sightings β = 2.5) is most useful in exploring and expanding range limits, both environmental 
and geographic, and particularly in surveys of the eastern slope. In turn, the most restrictive model 
(confirmed β = 1) with the least high-probability area predicted is best suited for optimizing the detection 
of new individuals. This model generated the narrowest region of high probability common to all models, 
and thus while it may exclude occupied regions, it is most likely to maximize the ratio of new detections 
to survey effort.  

The high-elevation zone corresponding closely to the Cascade crest (i.e., that we refer to as the “core” 
potential SNRF range) constituted high probability habitat according to all models regardless of which 
dataset or regularization setting was used and was therefore our most robustly supported inference about 
potential SNRF distribution. Our analysis necessarily included some degree of sampling bias. Sampling 
bias is most problematic when it excludes environmental variables or combinations. In our case, 
occurrence localities were clustered close to the crest with little east-west variation, but were well-
dispersed in clusters along the north-south axis. Moreover, the buffer size used (20 km) to define our 
available (background) habitat corresponded well to the distribution of our genetic samples relative to the 
red fox detections. While it is likely that low sampling effort contributed to intervening gaps in presence 
data on the latitudinal axis, the environmental space that characterizes the high-elevation portion of the 
Cascades was generally well-sampled. Maxent was therefore a useful tool to predict regions with 
environmental traits similar to clusters, regardless of false absences. Furthermore, the division of training 
and test data into latitudinal bins served to validate our model. Altogether, these findings point to the strip 
of habitat encompassing the crest to be the highest priority for future surveys to detect new individuals. 

The Maxent algorithm has no means to distinguish realized from potential habitat, which is important in 
predicting ranges of non-equilibrium populations. Notably, all unverified sightings that occurred on the 
eastern slope were reported prior to the mid-1990s. It is possible that distribution of SNRF was 
substantially greater in past decades, exhibiting a wider environmental tolerance than is represented by 
remnant pockets persisting today. For example, Grinnell et al. (1937) indicated SNRF in the Sierra 
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Nevada range were trapped or observed in mid-elevation forest as low 1,980 m, but today have been 
detected nearly exclusively above 2,750 m in the central Sierra Nevada (Quinn and Sacks 2014). If 
contemporary records accurately represent the fragmented nature of SNRF populations in the Oregon 
Cascades, and if these contractions did not occur randomly in environmental space, the more restrictive 
models built from recent detections may serve as a more useful representation of contemporary potential 
habitat.  

With respect to landscape connectivity, all models predicted high connectivity along the north-south 
extent of the crest, with the only notable gap occurring just south of Mount Hood. As discussed below, 
however, genetic connectivity appeared high across this gap, and less so further south where the model 
exposed no break in connectivity.  

Genetic Structure and Diversity 

Substructure — The most striking result from our genetic analyses was the indication that two 
populations with distinct genetic characteristics occur in the Oregon Cascade Range. Results of 
mitochondrial, Y-chromosome, and autosomal markers were consistent in the differentiation of 
individuals sampled from the northern and southern portions of the range with a geographic break 
coincident with U.S. Route 20 west of Bend. All of the individuals that were assigned to the southern 
genetic cluster based on microsatellite genotypes carried distinct maternal and, for males, paternal 
haplotypes, that were not shared with individuals assigned to the northern cluster. All three markers 
supported that the southern population was small and historically isolated, analogous to the population of 
SNRF in Lassen, California.  

The Maxent model provided little insight into the cause of genetic structure within the Oregon Cascades. 
Although the large gap in predicted-presence habitat separating Mount Hood from the Three Sisters 
region corresponded to a break in the distribution of mtDNA haplotypes, we observed no significant 
subdivision based on autosomal microsatellites or Y chromosomes. One possible explanation for this 
apparent contradiction is that the Maxent model performed inadequately for predicting male dispersal 
habitat. Alternatively, it is possible that Mount Hood and the Three Sisters region were connected 
indirectly by gene flow to the same population to the east (e.g., in eastern Oregon). A third possibility is 
that genetic effective population sizes on Mount Hood and the Three Sisters region had been larger for a 
longer period of time, thereby slowing their divergence from one another after isolation relative to that 
with the apparently smaller southern population.  

Population assignments were bimodal (q > 0.95 for >80% of individuals) and only a few individuals 
exhibited admixed profiles (i.e., intermediate q), suggesting that gene flow between the two within-
Cascades populations was relatively recent. The 3 admixed individuals were located mid-mountain range, 
consistent with a limited contact zone between the two populations. In combination with their maternal A-
19a haplotypes, their genotypes suggested they were first-generation offspring with mothers from the 
southern population and, by inference, fathers from the northern population. Because two were females 
and the only male failed to produce a usable Y chromosome genotype, we had no Y chromosome 
confirmation of their paternal ancestry. Additionally, at least one instance of long-distance dispersal was 
documented, specifically, a female (OR07) that strongly assigned to the northern group but which was 
sampled in Crater Lake National Park. Ultimately, the small sample of individuals used to detect this 
subdivision necessitates genetic analysis of additional individuals from the putative contact zone and 
throughout the ranges to help resolve the extent and degree of admixture between the two populations.  

Genetic diversity within Oregon Cascades populations — The genetic diversity of the northern 
population was unexpectedly high (He = 0.71), consistent with a large population that has retained much 
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of its ancestral diversity. However, the estimate of Ne for the northern population, although larger than for 
the southern population, was nevertheless relatively small, suggesting that the population could have 
undergone a demographic decline too recently to be reflected in the heterozygosity. Alternatively, the high 
heterozygosity could reflect admixture between previously distinct populations.  

In contrast, the genetic diversity of the southern population was very low (He = 0.44), consistent with a 
small, historically isolated population. This heterozygosity was similar to contemporary California 
populations (Lassen He = 0.47; Sonora Pass pre-hybridization He = 0.43; Quinn et al. 2014). For this and 
the California populations, heterozygosities were approximately two-thirds the magnitude of the 
corresponding historical estimates (Lassen and Oregon combined, He = 0.70; Sierra Nevada He = 0.64), 
and lower than contemporary populations of other montane populations (Washington Cascades = 0.60 
[Akins 2016], Idaho Rocky Mountains = 0.73 [Alden 2016]). The significantly higher average observed 
(average Ho = 0.51) than expected (under Hardy Weinberg equilibrium) heterozygosity in the southern 
Oregon population resulted in a negative FIS, which, although uncommon in natural populations, is 
theoretically expected in very small populations (Robertson 1965, Balloux and Williams 2004, Waples 
2015). The underlying principle is that large differences in allele frequencies between males and females 
can arise due to chance when the number of breeding adults is very small, (i.e. binomial sampling error) 
so that the sexes effectively represent different genetic subpopulations and their offspring appear 
“outbred.”  

Direct estimates of the genetic effective size (Ne) for the southern population based on decay of linkage 
disequilibrium (LD) similarly indicated a very small Ne, although several caveats render this estimate 
tentative. Foxes have strong pair bonds, but also have been observed to exhibit a degree of polygyny in 
some circumstances (e.g., Zabel and Taggart 1989), so best estimates likely fall somewhere within the 
range estimated under the assumption of monogamy (14.3, 95% CI = 10.5–20.4) and random mating (6.0, 
3.3–9.3). More importantly, our estimates were based on only 9 individuals, which was considerably 
fewer than the recommended minimum sample size of 25 individuals, although the small sample size of 
individuals was offset to some extent by our use of a relatively large number of loci (n = 31) relative to 
the recommended number (10–20; Luikart et al. 2010, Tallmon et al. 2010). Small sample sizes also tend 
to be most problematic for populations with large Ne (i.e. low sample size to Ne ratio) (Waples and Do 
2010). The most relevant concern over sample size was violation of the assumption of random sampling. 
Oversampling of close relatives would be expected to result in an underestimation of Ne. The LD 
estimator also assumed no migration, which was strictly violated (although gene flow appeared low), and 
would be expected to downwardly bias estimates.  

Connectivity to other populations — Initially, we sought specifically to assess connectivity of the Oregon 
portion of the Sierra Nevada red fox subspecies to other extant populations of the Sierra Nevada red fox, 
particularly, the one immediately to the south on and around Lassen Peak in California, as this question 
was of most obvious relevance to identification of management units (e.g., Distinct Population Segment 
designation by the USFWS). However, our discovery in this study that the red foxes of the Oregon 
Cascades composed two distinct populations necessitated the broadening this comparison to other 
adjacent populations, in particular, to Rocky Mountain populations to the east that are presumed to be 
primarily native but with some with some nonnative introgression (Statham et al. 2012b, Green et al., in 
press). Additionally, for thoroughness, we included a comparison to the Cascade red fox of Washington, 
directly north across the Columbia River, although its distinctiveness had been previously demonstrated 
(Sacks et al. 2010). As expected, the Washington Cascade red fox was completely distinct from both 
Oregon populations based both on Structure and PCA analyses. Thus, below we consider the connectivity 
of the southern Oregon Cascade population to the Lassen population, as was our initial objective, and 
potential connectivity of the northern Oregon Cascade population to Rocky Mountain red fox as well as 



18 
 

potentially to nonnative red foxes. 

The southern population was genetically distinct from all neighboring montane populations, based on 
both Structure and PCA analyses. In general, genetic distinctiveness of populations is a function of time 
since isolation and population size. Small populations become more rapidly differentiated due to genetic 
drift. Based on the estimated Ne of southern Oregon and Lassen populations, it seems likely that their high 
differentiation is at least partly due to population decline and isolation within the past century. As 
anticipated, we saw no evidence for contemporary gene flow between the two populations. The estimated 
FST, a common measure of genetic distance, also was high between southern Oregon and Lassen, similar 
to that observed between the two California SNRF populations (Quinn and Sacks 2014).  

In contrast to the southern Oregon Cascades population, the northern population was not distinct from all 
neighboring populations. In particular, both Structure and PCA analyses showed the northern population 
to be most closely related to the Rocky Mountain (V. v. macroura) subspecies. The inability of either 
method to distinguish northern Oregon samples from the larger pool of Rocky Mountain red foxes 
suggests either past or recent connectivity with the macroura subspecies, with the most likely conduit 
being through the Blue Mountain ecoregion in the northeast portion of the state where macroura 
historically occurred. Since the 1990s sightings of red fox in eastern Oregon have expanded to encompass 
8 counties, including unprecedented areas of open farmland as well as mountainous, historical habitat 
(Green et al., in press).  

Lastly, the finding of nonnative haplotypes (G-38) in the Mount Hood population warrants additional 
concern. The likely immediate source of this introgression was the adjacent low-elevation habitats of the 
Columbia River Gorge and Interstate Highway 84 (I-84) corridor, as suggested by the recovery of a road-
killed individual from I-84 in Hood River, <50 km to the north of the montane population that also carried 
the G-38 haplotype. However, it is unclear from our data whether nearby low-elevation foxes carrying G-
38 haplotypes are truly nonnative or whether they are expanding Rocky Mountain red foxes that reflect a 
small amount of nonnative introgression. For example, the northeastern Oregon red foxes carry primarily 
native Rocky Mountain red fox haplotypes, but a small proportion (10%) of them carry the nonnative 
mitochondrial haplotype, G-38 (Green et al., in press). Preliminary microsatellite analyses of these 
samples indicate that the eastern Oregon foxes reflect varying degrees of nonnative admixture but no 
evidence of pure nonnative red foxes (C. B. Quinn, B.N. Sacks, unpublished data). Based both on mtDNA 
and on preliminary microsatellite analyses of the northeastern Oregon samples used by Green et al. (in 
press), the Columbia Plateau, potentially linked to Mount Hood via the I-84 corridor, appears to have 
greater prevalence of nonnative ancestry. 

Given the paucity of samples in the present study from eastern Oregon and closer to the east-side of the 
Cascades, along I-84 and to the south, contemporary versus historical connectivity between northern 
Oregon Cascade and Rocky Mountain red fox populations remains somewhat unclear, as does the 
magnitude and significance of the nonnative red fox introgression. Addressing these questions seems a 
priority also for clarifying the subspecific level systematics of montane red foxes as well as the genetic 
integrity of native populations regardless of systematics. Regardless of connectivity of the northern 
Cascades population to neighboring populations, the southern Oregon population appears to reflect a very 
small relictual native population completely isolated from the California SNRF.  

Conclusions and conservation implications 

The low diversity and small Ne (uncertainty notwithstanding) together raise immediate concern regarding 
the long-term persistence of SNRF in Oregon. These results suggest the southern Oregon population, like 
those in California, has suffered a severe decline since historical times. These estimates are important for 
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conservation planning. First, Ne directly measures the influence of drift on a population, and is inversely 
related to the efficacy of selection to purge deleterious alleles or to fuel adaptation to changing climatic 
and environmental conditions. The southern Oregon population appears to possess similar amounts of 
genetic diversity to the Sonora Pass population, which has exhibited signs of inbreeding depression and 
reproductive deficiencies among natives (Quinn and Sacks 2014). Secondly, although ratios of effective to 
census population sizes vary widely, Ne serves as a loose indicator of the number of breeding adults in the 
population. When we factor in the large space-use requirements of montane red fox shown in other 
studies (Perrine 2005, Quinn and Sacks 2014; Akins 2016), it seems likely that the population is 
numerically small as well as genetically homogenous. Furthermore, the population occupies a smaller 
geographic region (i.e., south of U.S. Route 20) than we presumed prior to genetic analyses (the entire 
length of the Oregon Cascades).  

Recommendations 
1) Prioritize conservation of SNRF in the southern portion of the Cascades. Red fox in this region 

appear to be most vulnerable and to represent the most pristine remnant of SNRF ancestry of the 
Oregon Cascades.  

2) Use Maxent distribution models to guide surveys within the Cascade Range with emphases on (a) 
gaps in detections (e.g. north and south of Willamette Pass, north of the Three Sisters), and (b) the 
apparent contact zone immediately north of U.S. Route 20. Additional samples are necessary to refine 
our understanding of substructure, effective population size, and genetic diversity. 

3) Work with collaborators to obtain contemporary samples from other parts of Oregon, namely the Blue 
Mountain ecoregion and areas of human development immediately west and north of the Cascades. 
These Oregon samples can be used to compare to northern Cascade samples in admixture and 
population assignment analyses for more direct comparison. Reference samples of fur-farm founded 
populations and endemic Rocky Mountains within Oregon are necessary to resolve the origins of 
individuals in the northern Cascades. 

4) Assess home range size, age-specific survival, density, and other demographic characteristics of 
SNRF through telemetry and intensive ecological study to assess capacity to serve as donor or need to 
serve as recipient for captive rearing and/or translocations. We acknowledge the current small-scale 
telemetry study near Bend, but project expansion is necessary to more fully address this 
recommendation. 

5) Intensive sampling to estimate abundance of foxes, particularly in the southern population. 
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Table 1. Results of genetic analysis for 78 red fox DNA samples collected between 2010–2016, Oregon, USA, 
including samples in the Oregon Cascade Range (n = 73), and nearby regions (Mount Hood n = 1; Deschutes 
County n = 4; Malheur County n = 1).  

Lab ID Field ID 
Sample 
Type 

Lat Lon 
Date 

Collected 
Genetic 

Sex 
mtDNA 
Haplo 

Indiv ID 

S12-1157 20120808-1 hair 42.8903 -122.08161 8/8/2012  A-19 

S12-1158 20120808-2 hair 42.8903 -122.08161 8/8/2012  A-19 

S12-1225* 20120918 hair 45.7055 -121.59046 9/18/2012 M G-? OR01 

S13-0512 FS08 scat 44.4586 -121.84847 1/4/2013  A-19 

S13-0513 FS10 scat 44.4585 -121.83586 1/4/2013 F A-19 OR02 

S13-0514 FS10B scat 44.4585 -121.83586 1/4/2013  A-19 OR02 

S13-0515 W57 scat 44.4554 -121.8476 1/4/2013  A-19 OR02 

S13-1198 F5a,b,c hair 44.2693 -121.78003 4/23/2013 F A-19 OR03 

S13-1356 20110511jaS01 scat 45.3272 -121.67121 5/11/2011 M G-38 OR04 

S13-1624 20130512PSS01 scat 45.3397 -121.63381 5/12/2013 M A-19 OR05 

S13-1625 20130330TLS01 scat 45.3295 -121.70645 3/30/2013 F G-38 OR06 

S13-1628 20121104PSS01 scat 45.3422 -121.74023 11/4/2012 M G-38 

S13-2080 CRLA-01 scat 42.9214 -122.02947 6/24/2013 F A-19 OR07 

S13-2278 CRLA-02 scat 42.9291 -122.03266 7/8/2013  A-19 OR07 

S13-2559 CRLA-02 tissue 42.8699 -122.1442 7/27/2013 F A-19 OR08 

S14-0333 FS06 scat 44.455 -121.84711 12/13/2013 F A-19 OR02 

S14-0334 W48 scat 43.9938 -121.65555 12/17/2013  A-? 

S14-0346 HD01 scat 44.395 -121.88682 1/14/2014  A-? 

S14-0827 WPN-1 to WPN-8 hair 43.6164 -122.04028 4/29/2014  A-? 

S14-1006 sample 1 hair 44.3968 -121.88907 6/19/2014  A-19 

S14-1007 sample 2 hair 44.3968 -121.88907 6/19/2014  A-19 

S14-1052 FS01 scat 44.4025 -121.87333 5/2/2014  A 

S14-1053 FS02 scat 44.4036 -121.87222 5/2/2014  A 

S14-1054 FS02 scat 44.4022 -121.87502 6/9/2014 F A-? OR10 

S14-1260 20140714-2 scat 44.0174 -121.44085 7/14/2014  A-19 

S14-1262 20140714-1 scat 44.0174 -121.43511 7/14/2014  A 

S14-1264 20140714-2 scat 44.02 -121.44 7/14/2014  A 

S14-1266 20140714 scat 44.02 -121.44 7/14/2014  A-19 

S14-1343 WP-01 scat 43.6031 -122.0386 7/15/2014 F A OR11 

S14-1344 WP-02 scat 43.6031 -122.0386 7/15/2014  A-19 

S14-2259 20140902-2 scat 43.5945 -122.01089 9/2/2014 F A OR11 

S14-2260 20140902-3 scat 43.5942 -122.01018 9/2/2014 F A OR11 

S14-2262 20140902-1 scat 43.5968 -122.02079 9/2/2014 F A-19 

S14-2263 20140902-2 scat 43.5972 -122.02911 9/2/2014 F A-19 

S14-2265 20140903-2 scat 43.5965 -121.9997 9/3/2014  A-19 

S14-2266 20140903-3 scat 43.5946 -122.02179 9/3/2014 F A OR11 

S14-2268 20140903-2 scat 43.5939 -122.0084 9/3/2014  A-19 

S14-2270 20140905-4 scat 43.5904 -122.06396 9/15/2014  A-19 

S14-2271 20140915-2 scat 43.5871 -122.05305 9/15/2014 M A OR12 

S14-2274 20140915-2 scat 43.5869 -122.05333 9/15/2014 M A OR12 

S14-2275 20140915-3 scat 43.5903 -122.05827 9/15/2014 F A OR11 
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S14-2276 20140915-1 scat 43.582 -122.05918 9/15/2014  A-19 

S14-2279 20140915-3 scat 43.5918 -122.05408 9/15/2014 F A-19 

S14-2280 20140915-3 scat 43.5918 -122.05682 9/15/2014 M A OR12 

S14-2284 20140916-1 scat 43.5787 -122.06901 9/16/2014 M A OR12 

S14-2289 20140917-3 scat 43.5745 -122.05877 9/17/2014  A OR11 

S14-2302 20140918-2 scat 43.6091 -121.9493 9/18/2014  A-19 OR13 

S14-2303 20140918-3 scat 43.609 -121.94938 9/18/2014  A-19 

S14-2304 20140918-4 scat 43.6122 -121.95463 9/18/2014 M A-19 OR14 

S14-2305 20140918-1 scat 43.6081 -121.94328 9/18/2014 M A OR13 

S14-2306 20140918-2 scat 43.609 -121.95024 9/18/2014  A-19 

S14-2307 20140918-3 scat 43.6121 -121.95232 9/18/2014  A-19 

S14-2308 20140704PHS01 scat 45.3373 -121.72708 7/4/2014  G-38 

S14-2315 20140817PHS02 scat 45.3809 -121.66135 8/17/2014  G-38 

S14-2316 20140922SAS01 scat 45.3889 -121.65963 9/22/2014  G-38 

S14-2332 20140930AHS01 scat 45.3706 -121.65866 9/30/2014 F G-38 OR15 

S14-2560 Will Pass - 1 scat 43.604 -122.041 10/13/2014 M A-? 

S14-2561 Will Pass - 2 scat 43.611 -122.043 10/13/2014 M A-? OR16 

S14-2563 Will Pass - 4 scat 43.61 -122.039 10/13/2014 M A OR12 

S14-2564 Will Pass - 5 scat 43.61 -122.04 10/13/2014 M A OR12 

S15-1040 WP-3 scat 43.6071 -122.04618 6/5/2015 M A OR12 

S15-1041 WP-4 scat 43.6071 -122.04618 6/5/2015  A-? 

S15-1042 WP-5 scat 43.6071 -122.04618 6/5/2015  A-19 

S15-1043 WP-6 scat 43.6071 -122.04618 6/5/2015 F A-19 OR11 

S15-1044 WP-7 scat 43.6071 -122.04618 6/5/2015  A-? 

S15-1382 CRLA 17 scat 42.8957 -122.13667 7/28/2015 M A-19 OR17 

S15-1552* 20150209MG01 hair 44.1602 -121.30389 2/9/2015 M A-19 OR18 

S15-1557* 20150711HDMH01 hair 44.1677 -121.34963 7/11/2015 M A-19 OR19 

S15-1560 20150615MGS02 scat 43.9822 -121.64922 6/15/2015 F A-? 

S15-1565* 20150711HDMS01 scat 44.1674 -121.34797 7/11/2015 M A-19 OR19 

S15-1566* 20150711HDMS02 scat 44.168 -121.34731 7/11/2015 M A-19 OR20 

S15-1950 20150806RWS01 scat 44.4412 -121.79432 8/6/2015  A-? 

S16-0024 20150713-1 scat 43.9998 -121.86544 7/13/2015 F A-19 OR21 

S16-0025 20150713-2 scat 43.9982 -121.86705 7/13/2015  A-19 

S16-1325 20141109TWS01 scat 44.0037 -121.82582 11/9/2014  A-19 

S16-4635*†  hair 43.35146 -119.01628 2016 F A-19 OR23 

S16-5474 01-07212016ARS scat 42.9175 -122.02028 7/21/2016 M A OR22 

S16-5492 01-08052016NCW scat 42.8853 -122.08 8/5/2016 M A-19 OR22 

* Samples adjacent to the Cascade ecoregion that were included in genetic analyses but not used in Maxent species 
distribution modeling 
† Sample from Malheur County that was included in genetic Structure analysis for reference, but was not assigned to a 
population due to its geographic distance from the Cascade ecoregion. 
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Table 2. Percent contribution of predictor variables for Maxent models built using confirmed (verified through 
digital images and genetic samples collected during 2010–2016; n = 124) and inclusive (verified and unverified 
data collected during 1985–2016; n = 169) datasets of red fox detections in the Oregon Cascades, with default 
and optimum regularization settings. Land-cover type followed by minimum January temperature had the 
greatest influence in all model variations. 

 Confirmed Inclusive 

 
Default 
β = 1 

Optimum 
β = 3 

Default 
β = 1 

Optimum 
β = 2.5 

Land-cover 74.4 77.9 48.4 45.9 
Min. Jan. Temp 8.4 12.2 26.5 31.4 
Precip. Seasonality 6.4 0.0 0.1 17.6 
Isothermality 4.5 1.4 0.9 1.3 
Temp. Seasonality 2.8 1.3 0.5 0.9 
Canopy Cover 2.3 0.0 18.1 2.0 
Aspect 0.9 0.0 2.7 0.7 
Roughness 0.3 0.0 2.8 0.1 
Dec. Precip. 0.0 7.3 0.1 0.2 
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Table 3. Table of average AUC values estimated from spatial cross-validation of Maxent predictions for red fox 
in the Oregon Cascades. In both datasets, evaluation using the full or training data (AUCFULL, AUCTRAIN) were 
greatest for default models, but increased regularization improved the models’ abilities to predict spatially 
independent test data (AUCTEST) and reduced the difference between test and training performance (AUCDIFF). 

Input Data Regularization (β) AUCFULL AUCTRAIN AUCTEST AUC DIFF 
Confirmed 1 (default) 0.844* 0.838 (0.003)* 0.668 (0.004) 0.170 (0.005)
 3 (optimum) 0.806 0.857 (0.001) 0.784 (0.026)* 0.074 (0.032)*
Inclusive 1 (default) 0.819* 0.823 (0.001)* 0.758 (0.001) 0.065 (0.004)
 2.5 (optimum) 0.796 0.803 (0.000) 0.779 (0.005)* 0.023 (0.003)*

* better performing model for each dataset (i.e., confirmed, inclusive) 
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Table 4. Proportion of red fox occurrence records and proportion and area of Oregon Cascade study area 
encompassed by predicted presence after threshold decisions were applied to Maxent distribution models. Table 
demonstrates tradeoff between proportion and total area of study area predicted as presence (specificity) and 
proportion of occurrence records encompassed by prediction (sensitivity) depending on threshold criteria. 

Input Data 
Regularization 

(β) 
Threshold 

Probabilities 
Proportion 

of Presences 
Proportion of 
Study Area 

Area (km2) 

Confirmed  1 (default) 0.268 0.91 0.12 6,914 

0.499 0.73 0.04 2,439  
3 (optimum) 0.268 0.94 0.41 23,103 

0.499 0.73 0.06 3,223 
Inclusive 1 (default) 0.268 0.90 0.25 13,907 

0.499 0.66 0.07 3,786  
2.5 (optimum) 0.268 0.94 0.36 20,394 

0.499 0.63 0.08 4,432 
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Table 5. Genetic samples collected 2010-2016, Oregon, USA. 

Species Hair Scat Tissue Total 
DNA failed to amplify 2 75 2 79 
Coyote -- 95 -- 95 
Marten 4 63 -- 67 
Bobcat -- 47 -- 47 
Other species* 8 15 -- 23 
Red Fox 10 67 1 78 
Total 24 362 3 389 

*Other species included black bear, striped skunk, domestic dog, marmot, flying squirrel, and black-tailed deer (from hair 
brushes) 
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Table 6. Y-haplotypes for 9 male individual red fox in the Oregon Cascades, 2010-2016, based on 15 linked microsatellite loci. 

Lab ID Indiv ID Pop 
Y 

Haplo 
VVY
10a 

VVY
10b 

VVY
10c 

VVY
11 

VVY
13 

VVY
14a 

VVY
16 

VV
Y17 

VVY
3 

VVY
5a 

VVY
5b 

VVY
7 

VVY
8a 

Y29 Y30 

S14-2304 OR14 South 1 304 308 312 294 402 135 201 236 414 206 210 264 106 176 387 

S16-5492 OR22 South 1 304 308 312 294 402 135 201 236 414 206 210 264 106 176 387 

S14-2563 OR12 South 1 304 - 312 294 - 135 201 - - 206 210 264 106 176 - 

S15-1382 OR17 South 1 304 - - 294 - 135 201 - 414 206 210 - 106 176 - 

S14-2561 OR16 South 1 - 308 - 294 - - - - - 206 210 - 106 176 387 

S13-1624 OR05 North 2 304 306 312 294 402 135 201 236 - 206 212 252 106 174 387 

S15-1552 OR18 North 3 - 306 312 294 402 135 201 236 414 204 216 264 106 178 387 

S15-1566 OR20 North 4 304 306 316 294 - 135 199 236 394 206 208 256 106 172 387 

S15-1565 OR19 North 4 304 306 316 294 402 135 199 - 394 206 - 256 106 172 387 
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Table 7. Genetic diversity estimated for red fox in the Oregon Cascades and Lassen, California, using 31 microsatellites, including expected 
heterozygosity (He), observed heterozygosity (Ho), average number of alleles per locus (Avg No. alleles), and genetic effective population sizes (Ne) 
under assumptions of monogamy and random mating. Red fox individuals were assigned to north and south populations within the Oregon Cascades 
according to Structure results in Fig. 7, excluding q-values <0.7. 

Pop n He (SD) Ho (SD) FIS 
Avg No. 

alleles (SD) 
AR 

Ne (95% CI) 
Monog. 

Ne (95% CI) 
Rand. Mating 

North 
Oregon 

10 0.71 (0.02) 0.67 (0.03) 0.065 5.0 (2.2) 4.4 47.6 (36.5–66.5) 23.0 (17.5–32.4) 

South 
Oregon 

8 0.44 (0.04) 0.51 (0.03) -0.172* 2.9 (1.6) 3.0 14.3 (10.5–20.4) 6.0 (3.3–9.3) 

Total 21 0.67 (0.02) 0.60 (0.19) 0.112* 5.6 (0.9) 4.3 18.2 (16.5–20.2) 8.2 (7.3–9.2) 

Lassen 12 0.47 (0.03) 0.49 (0.03) -0.030 2.6 (0.8) 2.0 4.2 (6.6 – 7.4) 2.1 (1.8 – 2.4) 
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Table 8. Pairwise FST of montane red fox populations in the western US based on 31 autosomal microsatellites.  

 North Oregon South Oregon Lassen Rockies Washington 

North Oregon -     
South Oregon 0.180 -  

Lassen 0.189 0.339 -  

Rockies 0.040 0.140 0.188 -  

Washington 0.211 0.313 0.336 0.161 - 
Sierra Nevada 0.251 0.396 0.369 0.212 0.446 
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Figure 1. Locations of red fox detections 2010-2016 referenced in this report, including detections in the East 
and West Cascade ecoregions (genetic n = 78; photographs/digital images n = 37), and detections from 
neighboring regions (Hood River County n = 1; Deschutes County n = 3; Malheur County n =1), Oregon, USA. 
Genetic samples that failed to amplify or were identified as other species (n = 232) are shown as an index of 
survey intensity for genetic scat searches. 
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Fig 2. Indices of selection for variables with the strongest relationship, land-cover class (vegetation) and 
minimum January temperature. Selection was caluclated using ln(observed occurrences/expected occurrences + 
1) – ln(2). Positive and negative numbers indicate use of an environmental class proportionately greater and less 
than expected based on the composition of the study area. (Only land-cover classes where red fox were detected 
are shown.)  
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Figure 3. Average Maxent AUC values of spatially binned training (solid line) and test (dotted line) red fox 
occurrence data across a range of regularization values (β) for confirmed and inclusive datasets. We chose 
optimal values (*) where gains in AUCTEST plateaued and the difference between test and training scores were 
minimal.  
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Figure 4. Logistic projections of predicted relative occurrence of red fox in the Cascade ecoregion, based on 
Maxent modeling of confirmed and inclusive occurrence datasets, for default and optimal regularization settings 
(●= confirmed occurrence, + = unverified sighting). 
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Figure 5. Dichotomized Maxent predictions showing area of predicted presence using a restrictive threshold 
(>0.50; dark gray) and relaxed threshold (>0.27; light gray). Thresholds were determined by maximizing the 
difference between estimates of sensitivity and proportion of study area included in predicted presence (●= 
confirmed occurrence, + = unverified sighting).   
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Figure 6. Distribution of red fox genetic samples identified to individual using 31 autosomal microsatellites, 
2010-2016, Oregon Cascades, USA. Filled black circles represent genetic samples from red fox that failed to 
amplify a sufficient number of microsatellite loci for individual identification. 
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Figure 7. a) Diagnostic plot of 10 replicate Structure runs indicating greatest support for K = 2 distinct genetic 
clusters based on the first peak in the likelihood of the data [Ln P(K)] with low variance, and the delta K mode. 
b) Proportion of ancestry indicated by Structure analysis at K = 2 genetic clusters for red fox individuals in the 
Oregon Cascades, 2010-2016.  
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Figure 8. Map showing geographic break in genomic markers from red fox individuals sampled in the northern and southern portions of the Oregon 
Cascade ecoregion 2010-2016, with a contact zone mid-range corresponding approximately to Highway 20 (broken line). Symbols depict a single 
individual, showing a) proportion of individual ancestry (pie charts) estimated using 31 autosomal microsatellites in admixture program Structure at 
K = 2 genetic clusters (n = 21), b) mitochondrial haplotype (n = 19), and c) Y microsatellite haplotype (n = 9). 
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Figure 9. a) Structure results for the Oregon Cascade and other montane populations of red fox at K = 2–6 using 
31 autosomal microsatellites, indicating the southern Oregon Cascade, Lassen, and the Washington Cascade 
consistently form distinct populations. b) Diagnostic plot for Structure admixture results, showing lack of 
agreement for the best number of K genetic clusters: K = 2 had highest support based on the mode of delta K 
values, and likelihood of the data continued to show small gains as K clusters increased from 4 to 8.
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Figure 10. Principle component plots of montane red fox samples used in Structure analysis (Fig 9.), showing a) 
differentiation of the Lassen population and the southern Oregon Cascade population, and b) the Washington 
Cascade population along axis 3. 
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Appendix 1. Non-genetic occurrence records of red fox in the Oregon Cascade ecoregion (n = 97), including contemporary detections collected 
2010–2016 (n = 76), and past records from 1985–1999 (n = 21). Detections were used in Maxent species distribution modeling (confirmed records n 
= 52; opportunistic sighting records dataset n = 45) after filtering to retain one record per 4 km2. 

Detection Type Method Administrative Unit Source Lat Lon Elev (m) Date 

Photograph Carnivore Survey Willamette National Forest McFadden-Hiller and Hiller 2015 44.24822 -121.83495 1545 2013-2014 

Photograph Carnivore Survey Deschutes National Forest McFadden-Hiller and Hiller 2015 44.26927 -121.78003 1552 2013-2014 

Photograph Carnivore Survey Deschutes National Forest McFadden-Hiller and Hiller 2015 43.98984 -121.56020 1762 2013-2014 

Photograph Carnivore Survey Deschutes National Forest McFadden-Hiller and Hiller 2015 44.16728 -121.71237 1807 2013-2014 

Photograph Carnivore Survey Deschutes National Forest McFadden-Hiller and Hiller 2015 44.49142 -121.83164 1685 2013-2014 

Photograph Carnivore Survey Deschutes National Forest McFadden-Hiller and Hiller 2015 43.99384 -121.65555 1988 2013-2014 

Photograph Carnivore Survey Deschutes National Forest McFadden-Hiller and Hiller 2015 43.98165 -121.60668 1791 2013-2014 

Photograph Carnivore Survey Willamette National Forest McFadden-Hiller and Hiller 2015 44.46067 -121.85014 1816 2013-2014 

Photograph Carnivore Survey Deschutes National Forest McFadden-Hiller and Hiller 2015 44.15198 -121.63374 1667 2013-2014 

Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 45.40182 -121.73157 1707 10/5/2013 

Photograph Carnivore Survey Crater Lake National Park CRLA 2012 Red Fox Inventory 42.95719 -122.17444 2240 9/5/2013 

Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 45.33913 -121.73295 1783 5/16/2013 

Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 45.32735 -121.67114 1722 4/4/2013 

Photograph Carnivore Survey Willamette National Forest USFS NRIS Database 43.63916 -122.03943 3/18/2013 

Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 45.33969 -121.63381 1433 3/14/2013 

Photograph Carnivore Survey Willamette National Forest USFS NRIS Database 43.63923 -122.03958 3/8/2013 

Photograph Carnivore Survey 
Rogue River - Siskiyou National 
Forest 

USFS NRIS Database 43.09375 -122.28413  2/2/2013 

Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 45.39353 -121.65544 1920 1/13/2013 

Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 46.32922 -122.66773 1646 11/16/2012 

Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 45.39626 -121.64939 1798 9/9/2012 

Photograph Carnivore Survey Crater Lake National Park CRLA 2012 Red Fox Inventory 42.92914 -122.03955 2377 8/24/2012 

Photograph Carnivore Survey Crater Lake National Park CRLA 2012 Red Fox Inventory 42.89014 -122.07763 2275 8/20/2012 

Photograph Carnivore Survey Crater Lake National Park CRLA 2012 Red Fox Inventory 42.90665 -122.14860 2129 8/16/2012 

Photograph Carnivore Survey Crater Lake National Park CRLA 2012 Red Fox Inventory 42.95177 -122.18079 2241 8/12/2012 

Photograph Carnivore Survey Crater Lake National Park CRLA 2012 Red Fox Inventory 42.93703 -122.17411 2184 8/11/2012 

Photograph Carnivore Survey Crater Lake National Park CRLA 2012 Red Fox Inventory 42.89026 -122.08161 2314 8/8/2012 

Photograph Carnivore Survey Crater Lake National Park CRLA 2012 Red Fox Inventory 42.94602 -122.17866 2193 8/4/2012 

Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 45.33882 -121.73244 1768 4/23/2012 

Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 45.33654 -121.63031 1433 2/23/2012 
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Photograph Carnivore Survey Mount Hood National Forest Cascadia Wild 45.39174 -121.65963 1981 1/10/2012 

Photograph Carnivore Survey Crater Lake National Park CRLA 2012 Red Fox Inventory 42.98479 -122.12304 2109 9/22/2011 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.92739 -122.05608 2253 9/2/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.93024 -122.02862 2328 8/27/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.93191 -122.03657 2371 8/26/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.92422 -122.06058 2262 8/5/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.90940 -122.14128 2161 7/25/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.94635 -122.04432 2208 7/21/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.93485 -122.04126 2367 7/18/2013 

Photograph Opportunistic Deschutes National Forest Linda Turner, USFS 43.98985 -121.56828 7/2/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.91141 -122.14195 2107 7/1/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.91099 -122.14319 2157 6/30/2013 

Photograph Opportunistic Deschutes National Forest Linda Turner, USFS 43.98229 -121.52346 6/29/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.91049 -122.14195 2161 6/28/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.91187 -122.14987 2155 6/26/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.91466 -122.15976 2143 6/26/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.90970 -122.13800 2138 6/20/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.86516 -122.16631 1835 6/18/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.90976 -122.13709 2140 6/15/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.89396 -122.13622 1953 5/3/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.89628 -122.13604 1964 4/16/2013 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.89146 -122.13506 1948 12/6/2012 

Photograph Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.90140 -122.14696 2314 5/16/2012 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.92910 -122.02996 2344 9/11/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.93281 -122.04044 2369 9/6/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.98060 -122.15266 2112 9/1/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.86992 -122.14420 1873 7/27/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.92344 -122.06033 2266 7/27/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.90959 -122.13914 2144 7/21/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.91313 -122.07189 2047 7/21/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.95096 -122.17367 2327 7/15/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.86703 -122.16244 1832 7/7/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.90287 -122.14239 2121 6/26/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.90779 -122.12953 2278 6/25/2013 
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Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.94325 -122.04124 2238 6/20/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.90978 -122.13621 2154 6/15/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.86219 -122.15801 1806 6/11/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.88212 -122.09782 1980 6/11/2013 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.89523 -122.13719 2109 4/19/2013 

Sighting Opportunistic Willamette National Forest USFS NRIS Database 44.39600 -121.88402 4/12/2013 

Sighting Opportunistic Willamette National Forest USFS NRIS Database 43.62261 -122.04609 10/11/2012 

Sighting Opportunistic Crater Lake National Park CRLA Incidental Observation Database 42.86692 -122.14659 1846 7/2/2012 

Sighting Opportunistic Willamette National Forest USFS NRIS Database 43.83927 -122.27659 7/15/2011 

Sighting Opportunistic Willamette National Forest USFS NRIS Database 43.61240 -122.03595 12/1/2010 

Sighting Opportunistic Willamette National Forest USFS NRIS Database 43.60370 -122.03782 12/1/2010 

Sighting Opportunistic Willamette National Forest USFS NRIS Database 43.72017 -122.00632 10/1/2010 

Track Opportunistic Willamette National Forest USFS NRIS Database 44.44792 -121.84323 1/4/2013 

Sighting Opportunistic Deschutes National Forest USFS NRIS Database 44.46058 -121.64546 8/20/1999 

Sighting Opportunistic Deschutes National Forest USFS NRIS Database 43.35647 -121.76620 1390 6/26/1997 

Sighting Opportunistic 
Rogue River - Siskiyou National 
Forest 

USFS NRIS Database 42.76240 -122.48822 808 3/1/1993 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 42.53819 -122.23122 1841 6/5/1992 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 43.10075 -121.33915 1537 5/28/1992 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 42.25357 -122.13766 1459 9/26/1991 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 43.26783 -121.51317 1608 9/24/1991 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 42.52083 -122.21884 1793 6/25/1991 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 42.46664 -122.17866 1496 8/30/1990 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 43.30381 -121.49393 1859 6/20/1990 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 43.24966 -121.48135 1557 9/27/1989 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 42.78818 -122.12202 1737 8/30/1989 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 42.25357 -122.13766 1459 5/10/1989 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 42.43611 -122.12762 1277 9/12/1988 

Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 42.23575 -122.06097 1328 9/22/1986 

Sighting Opportunistic Deschutes National Forest USFS NRIS Database 43.55275 -121.78581 1592 6/28/1986 

Sighting Opportunistic Deschutes National Forest USFS NRIS Database 43.54209 -121.90136 1569 6/10/1986 

Sighting Opportunistic Deschutes National Forest USFS NRIS Database 43.29017 -121.75564 1457 6/3/1986 

Sighting Opportunistic Deschutes National Forest USFS NRIS Database 43.29265 -121.74409 1592 1/1/1986 

Sighting Opportunistic Deschutes National Forest USFS NRIS Database 43.55529 -121.82473 1890 10/9/1985 
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Sighting Opportunistic Fremont-Winema National Forest USFS NRIS Database 43.27647 -121.73844 1517 6/4/1985 
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Appendix 2. Environmental layers considered for Maxent modeling of red fox distribution in the Oregon 
Cascade ecoregion, prior to using variance inflation factor (VIF) to exclude variables with pairwise correlations 
>0.7. 

Category Code Environmental Layer Source 

Climate Tmean Mean annual temperature PRISM 30-year normal (800 m) 

Climate Tmax Maximum annual temperature PRISM 30-year normal (800 m) 

Climate Tmin Minimum annual temperature PRISM 30-year normal (800 m) 

Climate PPT Annual precipitation PRISM 30-year normal (800 m) 

Climate TminDec Minimum December temperature PRISM 30-year normal (800 m) 

Climate TMinJan Minimum January temperature PRISM 30-year normal (800 m) 

Climate TminFeb Minimum February temperature PRISM 30-year normal (800 m) 

Climate TmaxJune Maximum June temperature PRISM 30-year normal (800 m) 

Climate TmaxJuly Maximum July temperature PRISM 30-year normal (800 m) 

Climate TmaxAug Maximum August temperature PRISM 30-year normal (800 m) 

Climate BIO2   Mean Diurnal Range (Mean of monthly) Worldclim BIO2  

Climate BIO3   Isothermality (BIO2/BIO7) (* 100) Worldclim BIO3  

Climate BIO4   Temperature Seasonality (standard deviation *100) Worldclim BIO4  

Climate BIO7   Temperature Annual Range (BIO5-BIO6) Worldclim BIO7  

Climate BIO8   Mean Temperature of Wettest Quarter Worldclim BIO8  

Climate BIO9   Mean Temperature of Driest Quarter Worldclim BIO9  

Climate BIO10   Mean Temperature of Warmest Quarter Worldclim BIO10  

Climate BIO11   Mean Temperature of Coldest Quarter Worldclim BIO11  

Climate BIO13   Precipitation of Wettest Month Worldclim BIO13  

Climate BIO14   Precipitation of Driest Month Worldclim BIO14  

Climate BIO15   Precipitation Seasonality (Coefficient of Variation) Worldclim BIO15  

Climate BIO16 Precipitation of Wettest Quarter Worldclim BIO16 

Climate BIO17   Precipitation of Driest Quarter Worldclim BIO17  

Climate BIO18   Precipitation of Warmest Quarter Worldclim BIO18  

Topography Slope Slope USGS DEM (1 arc-second) 

Topography Aspect Transformed aspect (incident radiation) USGS DEM (1 arc-second) 

Topography Rough Roughness  USGS DEM (1 arc-second) 

Vegetation  Gap GAP land-cover category NW ReGAP 2010 

Vegetation  Cancov Percent canopy cover LEMMA GNN 
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Appendix 3. Classification of land-cover types in ReGAP layer for Maxent distribution model of red fox in the 
Oregon Cascade ecoregion. 

ReGAP Name 
ReGAP 

Code 
Maxent Class 

Maxent 
Code 

% Back-
ground 

Red Fox 
Detected?

Water 43 Water 1 0.019 - 

Old Field, Abandoned Cropland, Clearcuts, CRP 31 Disturbed 2 0.105 Y 

Developed Open Space 45 Disturbed 2 - - 

Rural Residential 34 Disturbed 2 - - 

Suburban 41 Disturbed 2 - - 

Urban 42 Disturbed 2 - - 

Urban 42 Disturbed 2 - - 

High Structure Agriculture 19 Disturbed 2 - - 

Pasture/Hay 32 Disturbed 2 - - 

Cultivated Crops 14 Disturbed 2 - - 

High Structure Agriculture 19 Disturbed 2 - - 

Alpine and Subalpine Habitats 3 Alpine 4 0.01 Y 

Lava Flows 23 Lava 6 0.015 Y 

Marshes, Bogs and Emergent Wetlands 25 Wetlands 10 0.016 - 

Mixed Conifer Forests 26 Mixed Conifer 13 0.379 Y 

Siskiyou Mixed Conifer Forests and Woodlands 39 Mixed Conifer 13 - - 

Juniper Woodlands and Savanna 21 Juniper Woodlands and 
Savanna 

16 0.006 - 

Mixed Hardwood-Conifer Forests 27 Mixed Hardwood-Conifer 
Forests 

17 0.014 - 

Subalpine Forests and Woodlands 40 Subalpine Forest 18 0.042 Y 

Chaparral 7 Chaparral 19 0.003 - 

Silver Fir - Mountain Hemlock Montane Forests 38 Silver Fir - Mt Hemlock 20 0.169 Y 

Lodgepole Pine Forests and Woodlands 24 Lodgepole 21 0.065 Y 

Ponderosa Pine Forests and Woodlands 33 Ponderosa 22 0.145 Y 

Low, Rigid, Black and Early Sagebrush Shrublands 
and Steppe 

8 Sagebrush 24 0.004 - 

Columbia Basin Grasslands and Prairie 13 Columbia Basin Grassland 27 0.001 - 

Montane Grasslands and Meadows 28 Montane Meadow 28 0.003 Y 

Forest/Shrub Swamps 18 Forest/Shrub Swamp 32 0.001 - 
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Appendix 4. Selection indices for 9 uncorrelated environmental layers estimated using red fox occurrence and 
background points within a 20-km radius, prior to Maxent distriubiton modeling in the Oregon Cascades. 
Selection was caluclated from using ln(observed occurrences/expected occurrences + 1) – ln(2). Positive and 
negative numbers indicate use of an environmental category proportionately greater and less than expected 
based on the composition of the study area. 
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Appendix 5. The Maxent modeled response of probability of red fox occurrence in the Oregon Cascades based on 9 uncorrelated environmental 
variables. Response curves are shown from the confirmed and inclusive datasets at default (a, c) and optimal (b, d) regularization settings, illustrating 
the tendency of higher regularization to dampen the response of modeled weak relationships. 
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Appendix 6. a) Proportion of occurrence and background points included in predicted presence surface 
according to the probability value selected as a threshold. Optimal threshold probability values (black fill 
circles) were chosen to promote discriminatory power, as determined by b) maximizing the difference in the 
proportions of occurrence and background points included in the predicted presence surface. In principle 
optimal thresholds should balance the amount of area predicted as presence (specificity) and the proportion of 
known occurrence records omitted from predicted area (1- sensitivity). 

 

 

 


